Помощь      Поиск      Участники      Календарь      Новости
 Учебные Материалы      ВАЛтест     Фотогалерея Фотогалерея
 Правила форума      Виртуальные тренажеры      Мемуары


  Reply to this topicStart new topicStart Poll

> (2020) Кривые Безье. Немного о пересечениях и, как можно проще
VAL
Дата 13.10.2020 22:42
Quote Post
Offline



Мэтр, проФАН любви... proFAN of love
*****

Профиль
Группа: Администраторы
Сообщений: 34524
Пользователь №: 1
Регистрация: 6.03.2004





(2020) Кривые Безье. Немного о пересечениях и как можно проще
Источники:
- https://habr.com/ru/post/522950/
- https://www.pvsm.ru/matematika/357804

QUOTE
Вы сталкивались когда-нибудь с построением (непрерывного) пути обхода кривой на плоскости, заданной отрезками и кривыми Безье?

Вроде бы не сильно сложная задача: состыковать отрезки кривых в один путь и обойти его "не отрывая пера". Замкнутая кривая обходится в одном направлении, ответвления — в прямом и обратном, начало и конец в одном узле.

Всё было хорошо, пока из-под рук дизайнеров не стали вылезать монструозные пути, где отдельные кривые могли пересекаться или не точно состыковываться. Объяснение было предельно простым — визуально они все лежат как надо, а для станка, который этот путь будет обходить, такие отклонения незаметны.

Вооружившись знанием о величине максимально допустимого отклонения, я приступил к исследованию, результатами которого хочу поделиться.


--------------------
www.valinfo.ru
Всегда... Always....
Quod licet jovi, non licet bovi!
PMEmail PosterUsers Website
Top
VAL
Дата 23.10.2020 14:21
Quote Post
Offline



Мэтр, проФАН любви... proFAN of love
*****

Профиль
Группа: Администраторы
Сообщений: 34524
Пользователь №: 1
Регистрация: 6.03.2004





:doh:


--------------------
www.valinfo.ru
Всегда... Always....
Quod licet jovi, non licet bovi!
PMEmail PosterUsers Website
Top
0 Пользователей читают эту тему (0 Гостей и 0 Скрытых Пользователей)
0 Пользователей:

Topic Options Reply to this topicStart new topicStart Poll